Abstract
The major drawback of the fuzzy c-means (FCM) algorithm is its sensitivity to noise. The authors propose a new extended FCM algorithm based a non-parametric Bayesian estimation in the wavelet transform domain for segmenting noisy MR brain images. They use the Bayesian estimator to process the noisy wavelet coefficients. Before segmentation based on FCM algorithm, they use an a priori statistical model adapted to the modelisation of the wavelet coefficients of a noisy image. The main objective of this wavelet-based Bayesian statistical estimation is to recover a good quality image, from a noisy image of poor quality. Experimental results on simulated and real magnetic resonance imaging brain images show that their proposed method solves the problem of sensitivity to noise and offers a very good performance that outperforms some FCM-based algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.