Abstract

Image segmentation is mostly used as a fundamental step in medical image processing, especially for clinical analysis of magnetic resonance (MR) brain images. Fuzzy c-means (FCM) algorithm is one of the well known and widely used segmentation methods, but this algorithm has some problem for segmenting simulated MR images to high number of clusters with different noise levels and real images because of spatial complexities. Anatomical segmentation usually requires information derived from the manual segmentation done by experts, prior knowledge can be useful to modify image segmentation methods. In this article we proposed a method to modify FCM algorithm using expert manual segmentation as prior knowledge. We developed combination of FCM algorithm and prior knowledge in order to modify segmentation of brain MR images with high noise level and spatial complexities. In real images, we had considerable improvement in similarity index of three classes (white matter, gray matter, cerebrospinal fluid) and in simulated images with different noise levels evaluation criteria of white matter and gray matter improved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.