Abstract

In this paper we propose a powerful frequency, phase angle, and amplitude estimation solution for an unbalanced three-phase power system based on multiple model adaptive estimation. The proposed model utilizes the existence of a conditionally linear and Gaussian substructure in the power system states by marginalizing out the frequency component. This substructure can be effectively tracked by a bank of Kalman filters where each filter employs a different angular frequency value. Compared to other Bayesian filtering schemes for estimation in three-phase power systems, the proposed model reformulation is simpler, more robust, and more accurate as validated with numerical simulations on synthetic data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.