Abstract
The focus of this research is to provide methods for generating precise parameter estimates in the face of potentially significant parameter variations such as system component failures. The standard multiple model adaptive estimation (MMAE) algorithm uses a bank of Kalman filters, each based on a different model of the system. Parameter discretization within the MMAE refers to selection of the parameter values assumed by the elemental Kalman filters, and dynamically redeclaring such discretization yields a moving-bank MMAE. An online parameter discretization method is developed based on the probabilities associated with the generalized Chi-squared random variables formed by residual information from the elemental Kalman filters within the MMAE. This algorithm is validated through computer simulation of an aircraft navigation system subjected to interference/jamming while attempting a successful precision landing of the aircraft.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.