Abstract

This paper presents a stabilizing fractional-order proportional integral (FOPI) controller design for the power control of a highly nonlinear Pressurized Heavy Water Reactor (PHWR) under step-back condition. A single robust FOPI controller is designed utilizing stability boundary locus method for eight nuclear reactor models of the PHWR linearized at different operating points. A set of stabilizing controller parameters is obtained for a typical fractional-order two non-integer order plus time delay (NIOPTD-II) model of the reactor satisfying design specifications of phase margin and gain crossover frequency. Then a flat phase constraint is developed to find a controller giving wide flat phase at the desired gain crossover frequency. The controller obtained is found to give iso-damped closed-loop response for all linearized models of PHWR. Simulation results show that the proposed FOPI controller applied for active step-back in the reactor give a deadbeat tracking performance without any undershoot for all operating points, defined for variation in initial power level or control rod drop. The efficacy of the proposed FOPI controller is verified by comparing its performance with existing methods in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.