Abstract

This paper investigates the robust flocking problem for second-order nonlinear systems with a leader and external disturbances. In contrast with most of second-order systems in the literature, the intrinsic dynamics here are nonlinear and non-identical that depend not only on the velocity but also on the position, which is more realistic. Moreover, the interaction topology is undirected and switching. Provided that the leader’s velocity may be constant or time-varying, two distributed flocking control laws have been proposed for two cases to make the differences of the velocities between all followers and the leader approach to zero asymptotically. The proposed distributed flocking control laws are both model-independent which results in the effectiveness of the controllers to cope with the different intrinsic dynamics of the followers and the leader under some assumptions on boundedness of several states. An example is given to illustrate the validity of the theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.