Abstract
ABSTRACTThis article investigates the containment control problem for a class of second-order multi-agent systems with inherent nonlinear dynamics, under the common assumption that each agent can only obtain the relative information of its neighbours intermittently. A kind of distributed protocol based only on the relative local intermittent measurements of neighbouring agents is designed for containment control under fixed directed topology. In the absence of delays, based on the Lyapunov function technology and the intermittent control method, some sufficient conditions are presented to guarantee the intermittent containment control of second-order nonlinear multi-agent systems. In the presence of delays, some containment conditions are also obtained for a second-order multi-agent systems with inherent delayed nonlinear dynamics and intermittent communications. Moreover, the similar results are obtained for second-order nonlinear multi-agent systems under switching directed topology. Finally, simulation examples are given to illustrate the correctness and effectiveness of the theoretical analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.