Abstract

In some real systems, the intermittent communications and the inaccurate velocity measurements are usually inevitable. To overcome these two communication limitations, this article aims at investigating the containment control problem for a class of second-order multi-agent systems with inherent nonlinear dynamics and aperiodically intermittent position measurements. Under the case that the velocity information is unavailable, a distributed filter is introduced for each second-order follower. Based on the distributed filter, a novel intermittent containment control protocol without velocity measurements is designed. Some sufficient conditions are derived under the common assumption that only relative position measurements between the neighbouring agents are utilized intermittently, and these conditions ensure that the second-order nonlinear multi-agent systems can achieve containment control. Furthermore, some simpler containment conditions are obtained for multi-agent systems with double-integrator dynamics under aperiodically intermittent communications. Finally, numerical simulations are provided to verify the effectiveness of the theoretical results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call