Abstract
ABSTRACTMixtures of factor analyzers (MFAs) have been popularly used to cluster the high-dimensional data. However, the traditional estimation method is based on the normality assumptions of random terms and thus is sensitive to outliers. In this article, we introduce a robust estimation procedure of MFAs using the trimmed likelihood estimator. We use a simulation study and a real data application to demonstrate the robustness of the trimmed estimation procedure and compare it with the traditional normality-based maximum likelihood estimate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Statistics - Simulation and Computation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.