Abstract
The autoregressive moving average (ARMA) model is a simple but powerful model in financial engineering to represent time-series with long-range statistical dependency. However, the traditional maximum likelihood (ML) estimator aims to minimize a loss function that is inherently symmetric due to Gaussianity. The consequence is that when the data of interest are asset returns, and the main goal is to maximize profit by accurate forecasting, the ML objective may be less appropriate potentially leading to a suboptimal solution. Rather, it is more reasonable to adopt an asymmetric loss where the model's prediction, as long as it is in the same direction as the true return, is penalized less than the prediction in the opposite direction. We propose a quite sensible asymmetric cost-sensitive loss function and incorporate it into the ARMA model estimation. On the online portfolio selection problem with real stock return data, we demonstrate that the investment strategy based on predictions by the proposed estimator can be significantly more profitable than the traditional ML estimator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.