Abstract

How hard are geometric vision problems with outliers? We show that for most fitting problems, a solution that minimizes the number of outliers can be found with an algorithm that has polynomial time-complexity in the number of points (independent of the rate of outliers). Further, and perhaps more interestingly, other cost functions such as the truncated L2-norm can also be handled within the same framework with the same time complexity. We apply our framework to triangulation, relative pose problems and stitching, and give several other examples that fulfill the required conditions. Based on efficient polynomial equation solvers, it is experimentally demonstrated that these problems can be solved reliably, in particular for low-dimensional models. Comparisons to standard random sampling solvers are also given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.