Abstract

We investigate the use of the L/sub /spl infin// cost function in geometric vision problems. This cost function measures the maximum of a set of model-fitting errors, rather than the sum-of-squares, or L/sub 2/ cost function that is commonly used (in least-squares fitting). We investigate its use in two problems; multiview triangulation and motion recovery from omnidirectional cameras, though the results may also apply to other related problems. It is shown that for these problems the L/sub /spl infin// cost function is significantly simpler than the L/sub 2/ cost. In particular L/sub /spl infin// minimization involves finding the minimum of a cost function with a single local (and hence global) minimum on a convex parameter domain. The problem may be recast as a constrained minimization problem and solved using commonly available software. The optimal solution was reliably achieved on problems of small dimension.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.