Abstract
In this paper, the problem of robust finite-time H∞ control for discrete-time singular Markovian jump systems with time-varying delay and actuator saturation is studied. First, sufficient conditions that guarantee the systems singular stochastic finite-time boundedness are derived via constructing a delay-dependent Lyapunov–Krasonskii functional and linear matrix inequalities (LMI) approaches. Then the results are extended to singular stochastic finite-time H∞ boundedness. Furthermore, with these conditions and convex optimization arithmetic, the design method of H∞ controller and conditions that ensure the H∞ disturbance attenuation level are obtained. Finally, some numerical examples are presented to illustrate the validity and efficiency of the proposed methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.