Abstract

This article concerns the stability analysis and design for uncertain stochastic systems with time-varying delays in state and actuator saturation. The parameter uncertainties belong to a convex polytopic set, and the delays are time varying. A sufficient condition is obtained in terms of a priori designed feedback matrix for determining if a given set is in inside the domain of attraction. Using the linear matrix inequality (LMI) approach, an estimate of the domain of attraction is presented. The problem of designing a state feedback controller such that the domain of attraction is enlarged is formulated through solving an optimisation problem with LMI constraints. A numerical example is given to illustrate the effectiveness of the proposed results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.