Abstract
Traditional parametric software reliability growth models (SRGMs) are based on some assumptions or distributions and none such single model can produce accurate prediction results in all circumstances. Non-parametric models like the artificial neural network (ANN) based models can predict software reliability based on only fault history data without any assumptions. In this paper, initially we propose a robust feedforward neural network (FFNN) based dynamic weighted combination model (PFFNNDWCM) for software reliability prediction. Four well-known traditional SRGMs are combined based on the dynamically evaluated weights determined by the learning algorithm of the proposed FFNN. Based on this proposed FFNN architecture, we also propose a robust recurrent neural network (RNN) based dynamic weighted combination model (PRNNDWCM) to predict the software reliability more justifiably. A real-coded genetic algorithm (GA) is proposed to train the ANNs. Predictability of the proposed models are compared with the existing ANN based software reliability models through three real software failure data sets. We also compare the performances of the proposed models with the models that can be developed by combining three or two of the four SRGMs. Comparative studies demonstrate that the PFFNNDWCM and PRNNDWCM present fairly accurate fitting and predictive capability than the other existing ANN based models. Numerical and graphical explanations show that PRNNDWCM is promising for software reliability prediction since its fitting and prediction error is much less relative to the PFFNNDWCM.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have