Abstract

This article addresses the problem that quadrotor unmanned aerial vehicle (UAV) actuator faults, including small-amplitude bias faults and gain degradation, cannot be detected in time. A hybrid observer, which combines the fast convergence from adaptive observer and the strong robustness from sliding mode observer, is proposed to detect and estimate UAV actuator faults accurately with model uncertainties and disturbances. A nonlinear quadrotor UAV model with model uncertainties and disturbances is considered and a more precise unified expression for actuator faults that do not require knowing where the upper or lower bound is provided. The original system is decomposed into two subsystems by coordinate transformation to improve detection accuracy for small amplitude bias faults and avoid external influences. The hybrid observer is then designed to estimate subsystem states and faults with good stability by selecting a Lyapunov function. A fault-tolerant controller is obtained depending on fault estimation by compensating the normal controller (proportion integral differential [PID] controller). Several numerical simulations confirmed that unknown actuator faults can be accurately detected, estimated, and compensated for even under disturbance conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.