Abstract
In this paper, two sliding mode based fault tolerant control (SM-FTC) strategies are designed, implemented and flight-tested in a physical quadrotor unmanned helicopter under the propeller damage and actuator fault conditions. Sliding model control (SMC) is well known for its capability of handling uncertainty and is expected to be a robust controller. Based on the concept of sliding mode control, both passive and active fault tolerant controls have been designed and experimentally tested on a quadrotor UAV (unmanned aerial vehicle) test-bed, known as Qball-X4, available at Concordia University in the presence of actuator faults and propeller damages. These two types of controllers are carried out and compared through theoretical analysis, simulation, and experimental flight tests on the quadrotor UAV system. Good control performance has been achieved in the presence of actuator faults and propeller damages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.