Abstract

Our aim is to construct a factor analysis method that can resist the effect of outliers. For this we start with a highly robust initial covariance estimator, after which the factors can be obtained from maximum likelihood or from principal factor analysis (PFA). We find that PFA based on the minimum covariance determinant scatter matrix works well. We also derive the influence function of the PFA method based on either the classical scatter matrix or a robust matrix. These results are applied to the construction of a new type of empirical influence function (EIF), which is very effective for detecting influential data. To facilitate the interpretation, we compute a cutoff value for this EIF. Our findings are illustrated with several real data examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.