Abstract

Epilepsy is a neurological disorder characterized by abnormal neuronal discharges that manifest in life-threatening seizures. These are often monitored via EEG signals, a key aspect of biomedical signal processing (BSP). Accurate epileptic seizure (ES) detection significantly depends on the precise identification of key EEG features, which requires a deep understanding of the data's intrinsic domain. Therefore, this study presents an Advanced Multi-View Deep Feature Learning (AMV-DFL) framework based on machine learning (ML) technology to enhance the detection of relevant EEG signal features for ES. Our method initially applies a fast Fourier transform (FFT) on EEG data for traditional frequency domain feature (TFD-F) extraction and directly incorporates time domain (TD) features from the raw EEG signals, establishing a comprehensive traditional multi-view feature (TMV-F). Deep features are subsequently extracted autonomously from optimal layers of one-dimensional convolutional neural networks (1D CNN), resulting in multi-view deep features (MV-DF) integrating both time and frequency domains. A multi-view forest (MV-F) is an interpretable rule-based advanced ML classifier used to construct a robust, generalized classification. Tree-based SHAP explainable artificial intelligence (T-XAI) is incorporated for interpreting and explaining the underlying rules. Experimental results confirm our method's superiority, surpassing models using TMV-FL and single-view deep features (SV-DF) by 4% and outperforming other state-of-the-art methods by an average of 3% in classification accuracy. The AMV-DFL approach aids clinicians in identifying EEG features indicative of ES, potentially discovering novel biomarkers, and improving diagnostic capabilities in epilepsy management.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.