Abstract

Developing efficient and biodegradable packaging films is of paramount significance owing to the scarcity of petroleum based resources. However, their applications in food packaging are limited due to their poor mechanical properties and inadequate biological activities. This study proposes a novel approach to develop the starch composite nanofibrous films (SNFs/TA/Fe3+) consisting of starch, tannic acid, and Fe3+ using the temperature-assisted electrospinning method. The addition of TA resulted in a decrease in the rate of thermal degradation, indicating an improvement in the thermal stability of SNFs. However, the incorporation of TA or TA/Fe3+ showed only a slight impact on the internal structure of SNFs. SNFs/TA/Fe3+ loaded with 0.1 wt% of Fe3+ demonstrated a significantly higher tensile strength compared to SNFs and those loaded with TA alone. The presence of TA enhances the antioxidant activity of SNFs, and the robust SNFs/TA/Fe3+ exhibited comparable antioxidant activity to SNFs/TA. However, the SNFs/TA/Fe3+ showed a reduction in antibacterial activity, possibly due to the high valence state of the metal ions. Overall, these findings highlighted that a simple electrospinning method was used to produce SNFs/TA/Fe3+ resulted in improved mechanical properties and antioxidant activity, offering a new strategy for the development of active food packaging using SNFs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.