Abstract

This paper considers the design of robust filters for radar pulse-Doppler processing when the interference is a wide sense stationary random process. The figure of merit which is optimized is the signal-to-interference-plus-noise ratio (SINR) at the filter output under a multitude of constraints accounting for Doppler filter sidelobes as well as uncertainties both in the received useful signal component and interference covariance matrix. The design is analytically formulated as a constrained optimization problem whose solvability is thoroughly studied. Precisely, a polynomial-time solution technique to get the optimal filter is proposed exploiting the representation of non-negative trigonometric polynomials via linear matrix inequalities, the spectral factorization theorem, and the duality theory. Last but not least, a detailed analysis of the optimum filter performance is provided showing the tradeoffs involved in the design and the gain achievable over some already known counterparts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call