Abstract

Internet of Things (IoT) ecosystem in smart cities demands fast, reliable, and efficient image data transmission to enable real-time Computer Vision (CV) applications. To fulfill these demands, an Orthogonal Frequency Division Multiplexing (OFDM)-based communication system has been widely utilized due to its higher spectral efficiency and data rate. When adapting such a system to achieve fast and reliable image transmission over fading channels, noise is introduced in the signal which heavily distorts the recovered image. This noise independently corrupts pixel values, however, certain intrinsic properties of the image, such as spatial information, may remain intact, which can be extracted as multidimensional features (in the convolution layers) and interpreted (in the top layers) by a Deep Learning (DL) model. Therefore, the current study analyzes the robustness of such DL models utilizing various OFDM-based image communication systems for CV applications in an Intelligent Transportation Systems (ITS) environment. Our analysis has shown that the EfficientNetV2-based model achieved a range of 70–90% accuracy across different OFDM-based image communication systems over the Rayleigh Fading channel. In addition, leveraging different data augmentation techniques further improves accuracy up to 18%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.