Abstract
Interior permanent magnet synchronous motor (IPMSM) drives have been widely employed in sustainable transport such as electric vehicles (EV). However, the traditional vector control (VC) strategies cannot achieve optimal control due to the intrinsic property of the IPMSMs, which is strong coupling. To solve the issue, this paper proposes an improved decoupling VC strategy to improve the steady-state performance of the IPMSMs with reduced parameter mismatch impacts. First, a deviation decoupling strategy is developed, and meanwhile, the parameters that influence the decoupling method are clearly illustrated. This enriches the theory concerning decoupling control and lays the ground for the development of effective solutions to the parameter mismatch issue. Second, the Luenberger observer theory is discussed, based on which the reason why the Luenberger inductance observers are not widely employed is explained for the first time. Third, with the aid of intermediate variables, which are the disturbances caused by the mismatched inductances, a new inductance identification method based on the Luenberger observer is proposed. Finally, the simulation and experimental results prove that the proposed decoupling methods, as well as the parameter identification method, are effective.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.