Abstract
This paper demonstrates a robust damping control design for multiple swing mode damping in a typical power system model using global stabilizing signals. A multiple-input, single-output (MISO) controller is designed for a thyristor-controlled series capacitor (TCSC) to improve the damping of the critical interarea modes. The stabilizing signals are obtained from remote locations based on observability of the critical modes. A H/sub /spl infin// damping control design based on the mixed-sensitivity formulation in a linear matrix inequality (LMI) framework is carried out. It is shown that, with local signal, supplementary damping control through three flexible AC transmission systems (FACTS) devices is necessary to provide damping to the three dominant interarea modes. On the other hand, the use of global signals has been shown to improve the damping of all the critical interarea modes with a single controller for the TCSC only. The damping performance of the centralized controller was examined in the frequency and the time domain for various operating scenarios. The controller was found to be robust against varying power-flow patterns, load characteristics, tie-line strengths, and system nonlinearities, including saturation.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have