Abstract

This paper deals with the problem of robust adaptive array beamforming using signal cyclostationarity. The constrained cyclic adaptive beamforming (C-CAB) algorithm presented by Wu and Wong (1996) [6] has been shown to be effective in performing adaptive beamforming without requiring the direction vector or the waveform of the desired signal. However, this algorithm suffers from severe performance degradation even if there is a small mismatch in the cycle frequency of the desired signal. In this paper, we first evaluate the performance degradation of the C-CAB algorithm in the presence of cycle frequency error (CFE). A novel compensation method in conjunction with the subspace projection is then proposed to tackle the problem due to CFE. We reconstruct the required cyclic conjugate correlation matrix by using a compensation matrix to cope with the deterioration of its dominant singular value when CFE exists. Finally, several simulation examples are provided to show the effectiveness of the proposed algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.