Abstract

In order to improve the stability and fault tolerance of the control system of the autonomous vehicle in the middle and low speed lane changing, a dual loop weighted trajectory tracking robust control system is designed. Firstly, the lateral displacement transfer function and yaw angle transfer function are derived by combining the mathematical model of trajectory planning and vehicle motion, and the proportion integral differential (PID) control parameters are calculated by mathematical derivation and transfer function reduction. Then, the influence of weighting coefficient on system stability and its determination method are studied by simulation. The results show that the dual-loop weighted control is feasible and effective, and it could provide a good fault tolerance, good control ability, good tracking effect, and small lateral displacement error and yaw angular velocity error for lane changing conditions in the medium and low speed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.