Abstract

Abstract This paper presents a linear robust control design algorithm for linear deterministic uncertain systems whose parameters vary within given bounded sets. The algorithm explicitly incorporates the structure of the uncertainty into the design procedure and utilizes the elemental perturbation bounds developed recently. A linear state feed-back controller is designed by parameter optimization techniques to maximize (in a given sense) the elemental perturbation bounds for robust stabilization. The design algorithm is then extended to the case of observer (Luenberger) based state feedback controllers and the relative trade offs are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.