Abstract

In this paper, a new methodology for robust control design of linear systems with time varying real parameter uncertainty is presented. The distinctive feature of this method is that it specifically offers robustness guarantees to real parameter uncertainty thereby providing a much needed alternative design method compared to existing design methods such as H∞ and μ-synthesis methods which tend to be conservative when specialized to real parameter uncertainty. The proposed robust control design method is inspired by sign (qualitative) stability idea from ecology, leading to a specific structure in the desired closed loop system matrix involving pseudosymmetry. The design procedure is simple and straightforward without requiring intensive computation. The proposed design algorithm is illustrated with aerospace applications. This algorithm is quite promising with considerable scope for extensions and improvements, finally adding to the bank of available control design methods for linear state space systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.