Abstract
Construction of brain atlases is generally carried out using a two-step procedure involving registering a population of images to a common space and then fusing the aligned images to form an atlas. In practice, image registration is not perfect and simple averaging of the images will blur structures and cause artifacts. In diffusion MRI, this is further complicated by the possibility of within-voxel fiber misalignment due to natural inter-subject orientation dispersion. In this paper, we propose a method to improve the construction of diffusion atlases in light of inter-subject fiber dispersion. Our method involves a novel q-space (i.e., wavevector space) patch matching mechanism that is incorporated in a mean shift algorithm to seek the most probable signal at each point in q-space. Our method relies on the fact that the mean shift algorithm is a mode seeking algorithm that converges to the mode of a distribution and is hence robustness to outliers. Our method is therefore in effect seeking the most probable signal profile at each voxel given a distribution of profiles. Experimental results confirm that our method yields cleaner fiber orientation distribution functions with less artifacts caused by dispersion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.