Abstract
Superficial white matter (SWM) plays an important role in functioning of the human brain, and it contains a large amount of cortico-cortical connections. However, the difficulties of generating complete and reliable U-fibers make SWM-related analysis lag behind relatively matured Deep white matter (DWM) analysis. With the aid of some newly proposed surface-based SWM tractography algorithms, we have developed a specialized SWM filtering method based on a symmetric variational autoencoder (VAE). In this work, we first demonstrate the advantage of the spherical representation and generate these spherical tracts using the triangular mesh and the registered spherical surface. We then introduce the Filtering via symmetric Autoencoder for Spherical Superficial White Matter tractography (FASSt) framework with a novel symmetric weights module to perform the filtering task in a latent space. We evaluate and compare our method with the state-of-the-art clustering-based method on diffusion MRI data from Human Connectome Project (HCP). The results show that our proposed method outperform these clustering methods and achieves excellent performance in groupwise consistency and topographic regularity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.