Abstract

SummaryThe present work addresses the problem of ensuring robust stability to time delayed plants, compensated with continuous‐time high frequency periodic controller. An efficient design methodology is proposed to synthesize the periodic controller for robust compensation of time delayed linear time‐invariant plants. The periodic controller, by virtue of its loop zero‐placement capability, is shown to achieve superior gain as well as phase/delay margin compensation, especially for non‐minimum phase plants having right half plane poles and zeros in close vicinity to each other. The periodic controller is considered in the observable canonical form which results in realizable bounded control input as well as ensuring insignificant periodic oscillations in the plant output. As a consequence, this paper, furthermore, establishes the fact that the periodic controller designed and synthesized with the proposed methodology can be implemented in real‐time with an assurance of model matching and robust zero‐error tracking. Simulation and experimental results are illustrated to establish the veracity of the claims. The closed‐loop system comprising of time‐delayed linear time‐invariant plant with the periodic controller is analyzed employing the averaging principle and presented here explicitly in a meticulous approach. Copyright © 2015 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.