Abstract

In this study, we consider the problem of testing for a parameter change in general integer-valued time series models whose conditional distribution belongs to the one-parameter exponential family when the data are contaminated by outliers. In particular, we use a robust change point test based on density power divergence (DPD) as the objective function of the minimum density power divergence estimator (MDPDE). The results show that under regularity conditions, the limiting null distribution of the DPD-based test is a function of a Brownian bridge. Monte Carlo simulations are conducted to evaluate the performance of the proposed test and show that the test inherits the robust properties of the MDPDE and DPD. Lastly, we demonstrate the proposed test using a real data analysis of the return times of extreme events related to Goldman Sachs Group stock.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.