Abstract

Molecular junctions consisting of a Ru(bpy)3 oligomer between conducting carbon contacts exhibit an exponential dependence of junction current on molecular layer thickness (d) similar to that observed for other aromatic devices when d < 4 nm. However, when d > 4 nm, a change in transport mechanism occurs which coincides with light emission in the range of 600-900 nm. Unlike light emission from electrochemical cells or solid-state films containing Ru(bpy)3, emission is bipolar, occurs in vacuum, has rapid rise time (<5 ms), and persists for >10 h. Light emission directly indicates simultaneous hole and electron injection and transport, possibly resonant due to the high electric field present (>3 MV/cm). Transport differs fundamentally from previous tunneling and hopping mechanisms and is a clear "molecular signature" relating molecular structure to electronic behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.