Abstract

The artificial integration of inorganic materials onto polymers to create the analogues of natural biocomposites is an attractive field in materials science. However, due to significant diversity in the interfacial properties of two kinds of materials, advanced synthesis methods are quite complicated and the resultant materials are always vulnerable to external environments, which limits their application scenarios and makes them unsuitable for scalable production. Herein, we report a simple and universal approach to achieve robust and scalable surface mineralization of polymers using a rationally designed triple functional molecular bridge of fluorosilane, 3-[(perfluorohexyl sulfonyl) amino] propyltriethoxy silane (PFSS). In a two-step solution deposition, the fluoroalkyl and siloxane of the PFSS take charge of its adhesion and immobilization onto polymers by hydrophobic interaction and wrapping-like chemical cross-linking, and then the assembly and growth of inorganic nanoclusters for integration are achieved by strong chemical coordination of PFSS sulfonamide. The versatile mineralization of inorganic oxides (e.g., TiO2, SiO2, and Fe2O3) onto chemically inert polymer surfaces was realized very well. The resultant mineralized materials exhibit robust and multiple functionalities for hostile applications, such as hydrophilic membranes for removing oils in strong acidic and alkaline wastewaters, fabrics with advanced anti-bacteria for healthy wearing, and plates with strong mechanical performance for better use. Experimental results and theoretical calculations confirmed the homogenous distribution of the PFSS onto polymers via cross-linking for robust coordination with inorganic oxides. These results demonstrate a skillful enlightenment in the design of high-performance mineralized polymer materials used as membranes, fabrics, and medical devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call