Abstract

The ability to precisely control electron irradiation-induced formation, growth, and assembly of nanoclusters or nanoparticles on a solid surface is important for design and creation of catalytically or chemically active surface sites and interfaces free from chemical reducing agents. Here, we show the results of an investigation of the electron dose-controlled formation, growth, and assembly of nanoclusters and nanoparticles in a molecularly assembled thin film of Au(I)-thiolate motifs on a substrate, highlighting an in situ monitoring of the evolution of morphology under controlled electron dose. With aurophilic motifs of Au(I)-thiolate being confined by electrostatic interactions, the sizes of Au nanoclusters and nanoparticles were shown to increase with electron dose, revealing a propensity of a string alignment of the grown nanoclusters and nanoparticles. This growth preference to one-dimensional assembly is supported by the analysis of the surface reaction kinetics in terms of the surface density of electron dose for the growth of the nanoclusters and nanoparticles. The electron dose-controlled size-focusing and directional assembly of nanoclusters and nanoparticles may be exploited as new strategy for the precise control of nanoclusters or nanoparticles and their assemblies on solid surfaces not only free from chemical reducing agent but also with the ability of visual monitoring of the morphological evolution during growth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call