Abstract

This thesis explores possibilities and limitations of extending classical combinatorial optimization problems for network flows and network design. We propose new mathematical models for logistics networks that feature commodities with multidimensional properties, e.g. their mass and volume, to capture consolidation effects of commodities with complementing properties. We provide new theoretical insights and solution methods with immediate practical impact that we test on real-world instances from the automotive, chemical, and retail industry. The first model is for tactical transportation planning with temporal consolidation effects. We propose various heuristics and prove for our instances, that most of our solutions are within a single-digit percentage of the optimum. We also study problem variants where commodities are routed unsplittably and give hardness results for various special cases and a dynamic program that finds optimal forest solutions, which overestimate real costs. The second model is for strategic route planning under uncertainty. We provide for a robust optimization method that anticipates fluctuations of demands by minimizing worst-case costs over a restricted scenario set. We show that the adversary problem is NP-hard. To still find solutions with very good worst-case cost, we derive a carefully relaxed and simplified MILP, which solves well for large instances. It can be extended to include hub decisions leading to a robust M-median hub location problem. We find a price of robustness for our instances that is moderate for scenarios using average demand values as lower bounds. Trend based scenarios show a considerable tradeoff between historical average costs and worst case costs. Another robustness concept are incremental hub chains that provide solutions for every number of hubs to operate, such that they are robust under changes of this number. A comparison of incremental solutions with M-median solutions obtained with an LP-based search suggests that a price of being incremental is low for our instances. Finally, we investigate the problem of scheduling the maintenance of edges in a network. We focus on maintaining connectivity between two nodes over time. We show that the problem can be solved in polynomial time in arbitrary networks if preemption is allowed. If preemption is restricted to integral time points, the problem is NP-hard and for the non-preemptive case, we show strong non-approximability results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call