Abstract

Stationary wireless power transfer has been deployed commercially and can be used to charge a variety of devices, including mobile phones and parked electric vehicles. However, wireless power transfer set-ups typically suffer from an inherent sensitivity to the relative movement of the device with respect to the power source. Nonlinear parity–time symmetric circuits could be used to deliver robust wireless power transfer even while a device is moving rapidly, but previous implementations have relied on an inefficient gain element based on an operation-amplifier circuit, which has inherent loss, and hence have exhibited poor total system efficiency. Here we show that robust and efficient wireless power transfer can be achieved by using a power-efficient switch-mode amplifier with current-sensing feedback in a parity–time symmetric circuit. In this circuit, the parity–time symmetry guarantees that the effective load impedance on the switch-mode amplifier remains constant, and hence the amplifier maintains high efficiency despite variation of the transfer distance. We experimentally demonstrate a nonlinear parity–time symmetric radiofrequency circuit that can wirelessly transfer around 10 W of power to a moving device with a nearly constant total efficiency of 92% and over a distance from 0 to 65 cm. A parity–time symmetric circuit that uses a switch-mode amplifier and current-sensing phase-delay feedback can wirelessly transfer around 10 W of power to a moving device with a nearly constant total efficiency of 92%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.