Abstract
In this paper, an efficient wireless power transfer (WPT) design using near-field inductive 4-coil strongly-coupled-magnetic-resonance (SCMR) for powering up miniature biosensors at the ISM band of 5.8 GHz is proposed and analyzed. The miniature device has a tiny square planar inductor of size 110 × 110 µm as a receiver (RX) coil integrated on a standard silicon substrate. Another planar coil of 3 mm in diameter is designed on a FR4 substrate as the transmitting (TX) coil, which is fixed at 1 mm away from the RX coil in this study. The corresponding 4-coil SCMR system has the same TX and RX coils but with two relay coils between them, where the closest distance from the relay coil to the RX coil is also fixed at 1 mm. Analytic equations are used to describe the design for both scenarios, and 3-Dimensional (3-D) S-parameter and B-Field electromagnetic (EM) simulations show that the optimized 4-coil system consistently outperforms the optimized 2-coil WPT system by ∼6–7 dB, reaching an impressive inductive power coupling of ∼ −20.2 dB (i.e., ∼ 1% power transfer efficiency) unto the tiny RX coil for potentially powering up novel implantable and other miniature devices without bulky batteries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.