Abstract

Wavefront engineering is an important quantum technology, often applied to the production of states carrying orbital angular momentum (OAM). Here, we demonstrate the design and production of robust C-shaped beam states carrying OAM, in which the usual doughnut-shaped transverse intensity structure of the vortex beam contains an adjustable gap. We find that the presence of the vortex lines in the core of the beam is crucial for maintaining the stability of the C-shape structure during beam propagation. The topological charge of the vortex core controls mainly the size of the C-shape, while its opening angle is related to the presence of vortex–anti-vortex loops. We demonstrate the generation and characterisation of C-shaped electron vortex beams, although the result is equally applicable to other quantum waves. C-shaped electron vortex beams have potential applications in nanoscale fabrication of planar split-ring structures and three-dimensional chiral structures as well as depth sensing and magnetic field determination through rotation of the gap in the C-shape.

Highlights

  • The topological charge of the vortex core controls mainly the size of the C-shape, while its opening angle is related to the presence of vortex-anti-vortex loops

  • We demonstrate the generation and characterisation of C-shaped electron vortex beams, the result is applicable to other quantum waves

  • We show here that it carries a well defined orbital angular momentum (OAM) despite not having a circularly symmetric cross section

Read more

Summary

Introduction

We demonstrate the generation and characterisation of C-shaped electron vortex beams, the result is applicable to other quantum waves. C-shaped electron vortex beams have potential applications in nanoscale fabrication of planar split ring structures and three dimensional chiral structures as well as depth sensing and magnetic field determination through rotation of the gap in the C-shape.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call