Abstract
Quantum key distribution (QKD) networks are promising to serve large numbers of users with information-theoretic secure communication. In QKD networks, the detection-safe protocol, termed measurement-device-independent (MDI) QKD, can naturally enhance realistic security by supporting untrusted measurement nodes. However, the environmental disturbances to quantum states degrade the performance of multi-user communication. Here we propose an MDI-QKD networking scheme with robustness against environmental disturbance and adaptability to multi-user access, where more than two users can generate keys simultaneously regardless of aligning reference frames and compensating channel disturbance on polarization. To achieve this, we introduce the reference-frame-independent protocol as well as a polarization-compensation-free method, design a multi-user measurement unit, and combine it with original two-user units. The scheme is experimentally demonstrated for the improvement of network robustness and adaptability in multi-user scenarios, and the time and device costs of disturbance compensation can be saved from O ( N ) to O ( 1 ) for an N-user network.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have