Abstract

This paper presents a new robust adaptive synchronization method for a class of uncertain dynamical complex networks with network failures and coupling time-varying delays. Adaptive schemes are proposed to adjust controller parameters for the faulty network compensations, as well as to estimate the upper and lower bounds of delayed state errors and perturbations to compensate the effects of delay and perturbation on-line without assuming symmetry or irreducibility of networks. It is shown that, through Lyapunov stability theory, distributed adaptive controllers constructed by the adaptive schemes are successful in ensuring the achievement of asymptotic synchronization of networks in the present of faulty and delayed networks, and perturbation inputs. A Chua's circuit network example is finally given to show the effectiveness of the proposed synchronization criteria.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call