Abstract

This paper proposes a novel robust adaptive filter that combines smooth variable structure filter and extended Kalman filter for the spacecraft attitude estimation with model uncertainty originating from gyro drift, parameter error, and installation error. The proposed filter employs the extended Kalman filter based on quaternion and fuses an adaptive factor and smooth variable structure filter to improve robustness to the model uncertainty and noise. To improve the robustness of the extended Kalman filter, an adaptive factor that tunes the predicted covariance matrix is utilized to design the attitude estimation strategy. Moreover, to further decrease the impact of the suddenly rapid maneuvering and improve its robust effect of model uncertainty induced by dynamic error, gyro drift, and so on, a smooth variable structure estimation strategy founded on sliding mode theory is derived and utilized for the satellite attitude estimation. Thereby, a novel filtering algorithm is proposed by incorporating an adaptive factor and a smooth variable structure estimation strategy. Simulation results indicate that our proposed algorithm delivers exceptional robustness and achieves high precision and accuracy in satellite attitude estimation compared with the traditional extended Kalman filter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.