Abstract

This paper presents a robust adaptive fuzzy neural controller suitable for trajectory control of robot manipulators. The proposed controller has the following salient features: 1) self-organizing fuzzy neural structure; 2) online learning; 3) fast learning speed; 4) fast convergence of tracking error; 5) adaptive control; and 6) robust control, i.e. asymptotic stability of the control system is established using Lyapunov theorem. Computer simulation studies were carried out and comparison of simulation results with some existing controllers demonstrate the flexibility, adaptability and good tracking performance of the proposed controller.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.