Abstract

This paper presents a robust adaptive fuzzy neural controller (AFNC) suitable for identification and control of a class of uncertain multiple-input-multiple-output (MIMO) nonlinear systems. The proposed controller has the following salient features: 1) self-organizing fuzzy neural structure, i.e., fuzzy control rules can be generated or deleted automatically; 2) online learning ability of uncertain MIMO nonlinear systems; 3) fast learning speed; 4) fast convergence of tracking errors; 5) adaptive control, where structure and parameters of the AFNC can be self-adaptive in the presence of disturbances to maintain high control performance; 6) robust control, where global stability of the system is established using the Lyapunov approach. Simulation studies on an inverted pendulum and a two-link robot manipulator show that the performance of the proposed controller is superior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.