Abstract

This paper presents a robust proportional derivative adaptive nonsingular finite-time synergetic tracking control (PDAFS) for a parallel Delta robot system. First, a finite-time synergetic controller combined with a proportional derivative (PD) control is constructed based on an object-oriented model to fulfill the robust tracking control of the robot. Then, an adaptive radial basis function approximation neural network (RBF) is designed to compensate for the effects of uncertainty parameters and external disturbances. Second, a second-order sliding mode (SOSM) differentiator is implemented to reduce the chattering noises due to the low-resolution encoders. Third, the stability theorems of the proposed control scheme are provided, where the Lyapunov stability theory is used to prove the theorems. Then, simulations of the helix trajectory tracking and the pick-and-place task are demonstrated on the Delta robot to validate the advantages of the proposed control scheme. Based on the advances, an implementing control system of the proposed controller is performed to improve the Delta robot’s performance in the experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.