Abstract
This paper proposes a new method to design an online robust adaptive dynamic programming algorithm (RADPA) for a wheeled mobile robot which is equipped with an omni-directional vision system. To integrate kinematic and dynamic controllers into the unique controller, we transform the strict feedback system dynamics into tracking error dynamics. Then, we propose a control scheme which uses only one neural network rather than three proposed in the actor-critic-based control schemes for the two-player zero-sum game problem. A neural network weight update law is designed for approximating the solution of the Hamilton–Jacobi–Isaacs equation without knowing knowledge of internal system dynamics. To implement the scheme, we propose the online RADPA, in which control and disturbance laws are updated simultaneously in an iterative loop. The convergence and stability of the online RADPA are proven by Lyapunov techniques. Simulations and experiments on a wheeled mobile robot testbed are carried out to verify the effectiveness of the proposed algorithm.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have