Abstract

This work proposes a robust adaptive mixing controller to achieve trajectory tracking throughout the full-flight envelope, with ensured stability, of a quad-tiltorotor convertible plane (CP) vertical take-off and landing (VTOL) unmanned aerial vehicle (UAV), here called QuadCP-VTOL UAV. Accordingly, a nonlinear multi-body dynamic model is obtained using the Euler-Lagrange formalism, from which a linear parameter-varying (LPV) model is derived to describe the dynamics of the QuadCP-VTOL UAV within its flight envelope. The set containing the UAV's flight envelope is partitioned into subsets and, for each subset, a less conservative formulation of the linear robust mixed H2/H∞ candidate controller is proposed. An adaptive mixing scheme is employed to perform a convex combination of the candidate controllers within the subsets intersection. Results of Hardware-In-the-Loop (HIL) experiments are presented to corroborate the efficacy of the proposed control strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.