Abstract
Purpose The proposed Sliding Mode Control-Global Regressive Neural Network (SMC-GRNN) algorithm is an integration of Global Regressive Neural Network (GRNN) and Sliding Mode Control (SMC). Through this integration, a novel structure of GRNN is designed to enable online and. This structure is then combined with SMC to develop a stable adaptive controller for a class of nonlinear multivariable uncertain dynamic systems.Design/methodology/approach In this study, a new hybrid (SMC-GRNN) control method is innovatively developed.Findings A novel structure of GRNN is designed that can be learned online and then be integrated with the SMC to develop a stable adaptive controller for a class of nonlinear uncertain systems. Furthermore, Lyapunov stability theory is utilized to ensure the hidden-output weighting values of SMC-GRNN adaptively updated in order to guarantee the stability of the closed-loop dynamic system. Eventually, two different numerical benchmark tests are employed to demonstrate the performance of the proposed controller.Originality/value A novel structure of GRNN is originally designed that can be learned online and then be integrated with the sliding mode SMC control to develop a stable adaptive controller for a class of nonlinear uncertain systems. Moreover, Lyapunov stability theory is innovatively utilized to ensure the hidden-output weighting values of SMC-GRNN adaptively updated in order to guarantee the stability of the closed-loop dynamic system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.