Abstract

Robots are increasingly envisaged as our future cohabitants. However, while considerable progress has been made in recent years in terms of their technological realization, the ability of robots to interact with humans in an intuitive and social way is still quite limited. An important challenge for social robotics is to determine how to design robots that can perceive the user’s needs, feelings, and intentions, and adapt to users over a broad range of cognitive abilities. It is conceivable that if robots were able to adequately demonstrate these skills, humans would eventually accept them as social companions. We argue that the best way to achieve this is using a systematic experimental approach based on behavioral and physiological neuroscience methods such as motion/eye-tracking, electroencephalography, or functional near-infrared spectroscopy embedded in interactive human–robot paradigms. This approach requires understanding how humans interact with each other, how they perform tasks together and how they develop feelings of social connection over time, and using these insights to formulate design principles that make social robots attuned to the workings of the human brain. In this review, we put forward the argument that the likelihood of artificial agents being perceived as social companions can be increased by designing them in a way that they are perceived as intentional agents that activate areas in the human brain involved in social-cognitive processing. We first review literature related to social-cognitive processes and mechanisms involved in human–human interactions, and highlight the importance of perceiving others as intentional agents to activate these social brain areas. We then discuss how attribution of intentionality can positively affect human–robot interaction by (a) fostering feelings of social connection, empathy and prosociality, and by (b) enhancing performance on joint human–robot tasks. Lastly, we describe circumstances under which attribution of intentionality to robot agents might be disadvantageous, and discuss challenges associated with designing social robots that are inspired by neuroscientific principles.

Highlights

  • Robots are becoming a vision for societies of the near future, partially due to a growing need for assistance beyond what is currently possible with a human workforce (Ward et al, 2011)

  • We suggest that research should build upon these observations and investigate (a) which physical and behavioral agent features are associated with humanness and are able to make artificial entities appear social, and (b) how perceiving artificial agents as social entities affects attitudes, acceptance and performance in human–robot interaction

  • This review focuses on humanoid robots for the following reasons: first, the goal of this review is to understand social interactions between humans and robots that live in shared environments

Read more

Summary

INTRODUCTION

Robots are becoming a vision for societies of the near future, partially due to a growing need for assistance beyond what is currently possible with a human workforce (Ward et al, 2011). One problem with the current state of social robotics research is that it often lacks systematicity, and in effect, specifications of particular features that facilitate treating robots as social companions are not sufficiently addressed We suggest addressing this issue by using behavioral and physiological neuroscience methods (i.e., eye-tracking, EEG, fNIRS, fMRI) in robotics research with the goal of objectively measuring how humans react to robot agents, how they perform tasks with robots and how they develop mutual understanding and social engagement over time. The ultimate goal is to create robots that are human-like enough to evoke mechanisms of social

Method
Findings
CONCLUSION
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.