Abstract

Developing on‐site biomarker enrichment platforms could help to improve the diagnosis of gastrointestinal (GI) tract diseases at early stages. Medical procedures, such as colonoscopies and imaging techniques, are used to diagnose a disease, but are not easily accessible for repeat measurements. In contrast, liquid biopsies, e.g., blood, urine, or fecal samples, have become important sampling strategies to identify health concerns. Herein, a robotic pill is designed for collecting relevant biomarkers from the GI tract over prolonged sampling periods. The robotic pill is comprised of a magnetic core for locomotion, a delayed gate mechanism that controls sampling location based on changes in its environment, and an enrichment module that traps biomarkers in an absorbent matrix while enabling biofluid to pass through the chamber. The robotic pill was assessed to sample microparticles, proteins, and bacteria from the solution. Moreover, the robotic pill was capable of directed locomotion in complex environments and docking in a targeted region against fluid flow. The utilization of an untethered robotic sampling system could provide a tool to investigate aspects of disease initiation and progression for early diagnosis and therapy monitoring. A preprint version of the article can be found at: https://www.authorea.com/doi/full/10.22541/au.164458092.26571169.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.